



Division of Graduate Medical Studies Yong Loo Lin School of Medicine

The Effect of Hearing Aids on Postural Control in Elderly Patients with Hearing Loss

Su Junqiang (A0102711B) e0487534@u.nus.edu Supervisors: Dr. Goh Xueying & Ms. Tan Kah Yee

Contents

01 The Problem

- Postural Control and Falls
- Effects of Ageing on Postural Control

02 Balance and Hearing Loss

- ➤ Hearing Loss
- Effects of Hearing Amplification

03 Methodology

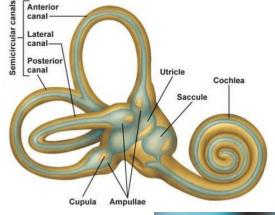
- ➢ Inclusion and Exclusion Criteria
- Assessments Done

04 Results and Discussion

- Summary of Findings
- Limitations
- Future Work

The Problem

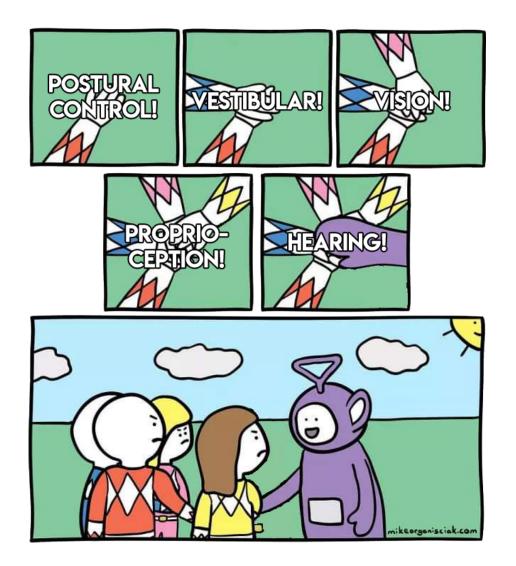
The deteriorating postural control and its consequences


Falls

- 1 in 3 adults aged 65 years and above falls once a year (Health Promotion Board, 2015)
- Leading cause of injury among Elderly in Singapore
- Can result in psychological (e.g. phobia, anxiety disorder) and social (e.g. self-imposed functional limitations) consequences as well
- Serious problem to Singapore's ageing population

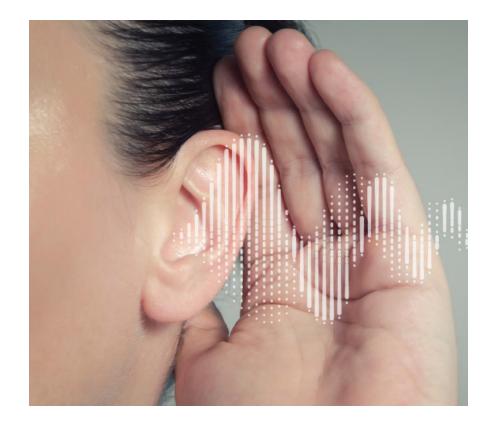
Postural Control

- Poor postural control can lead to falls
- Regulation of sensory information from other systems by Central Nervous System (CNS) to provide controlled, upright posture (Alghwiri & Whitney, 2012)
- Sensory information involved:
 - Vestibular system
 - Vision
 - Proprioception
- Sensory organization: selection of input to provide accurate orientation information and ignore misleading ones



Effects of Ageing

- Effects of ageing:
 - <u>Vestibular</u>: progressive loss of peripheral hair cells (Rosenhall, 1973) and vestibular nerve fibres (Bergstrom, 1973)
 - <u>Vision</u>: visual acuity, contrast sensitivity and depth perception diminish (Dayhew, 2001)
 - <u>Proprioception</u>: deterioration of muscle spindle function
- Results in sensory conflict: misleading or inaccurate information provided by one or more of the senses
- Postural control affected



Balance and Hearing Loss

So how does hearing come into the story?

Hearing Loss

- Hearing loss associated to self-reported falls (Lin & Ferrucci, 2012) which is related to poor postural control (Viljanen et al., 2009)
- 1.4 fold increase in odds of falling for every 10 dB of hearing loss (National Health and Nutrition Examination Survey, n.d.)
- Possible explanations:
 - Concomitant vestibular and cochlear dysfunction (cochlea-saccular degeneration)
 - Reduced awareness of auditory and spatial environment
 - Compensatory effect of hearing loss on cognitive loss and shared attention

Effects of Hearing Amplification

Cochlear Implants

- Contradictory results obtained
- > Possible reasons for no significant improvement:
 - Most patients involved were fitted unilaterally; spatial benefits of binaural hearing eliminated
 - Underlying etiology of profound hearing loss unknown; could be associated with other deficits in the vestibular system (Vitkovic, Le, Lee & Clark, 2016)

Effects of Hearing Amplification

Hearing Aids

- Variations in study design:
 - Romberg on foam and tandem test (Rumalla et al., 2015)
 - Wii balance board (Vitkovic et al., 2016)
 - Force plate (Negahban et al., 2017)
 - TUG test (Weaver et al., 2017)
 - Sensory Organisation Test (SOT) (McDaniel et al., 2018)
- Different target age groups
- 3 out of 5 studies identified showed significant improvement in postural control

Aims and Hypothesis

<u>Aims</u>

- > To investigate the relationship between auditory input and postural control
- To determine if the usage of hearing aids can help improve postural control in elderly with hearing loss

Hypothesis

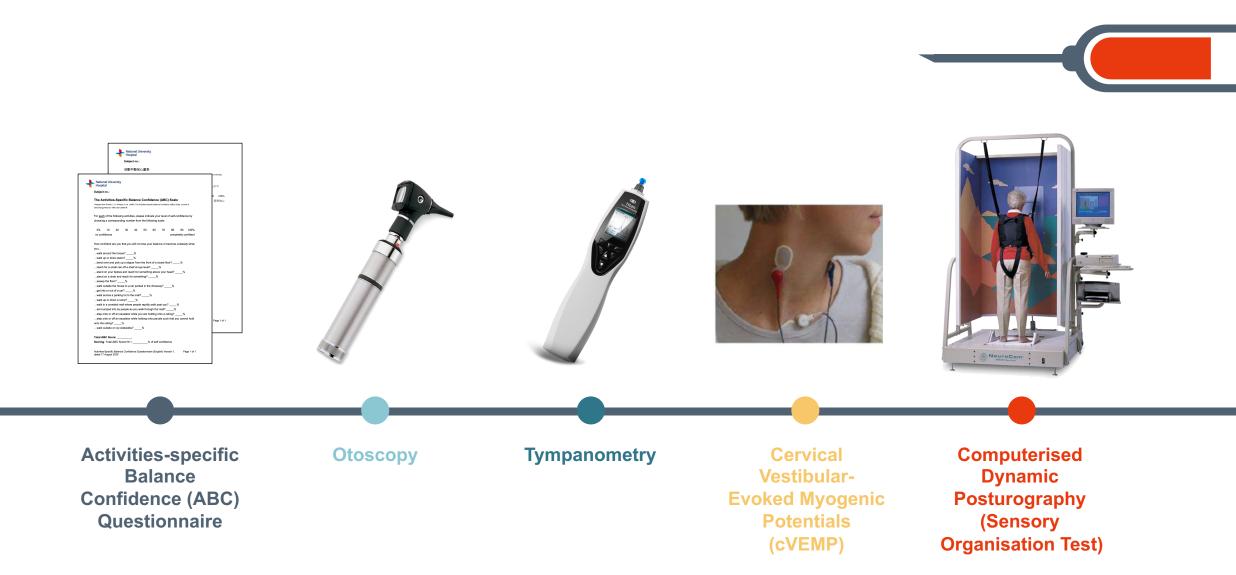
The usage of hearing aids will help to improve postural control.

Methodology

Patient Selection and their Participation

Inclusion & Exclusion Criteria

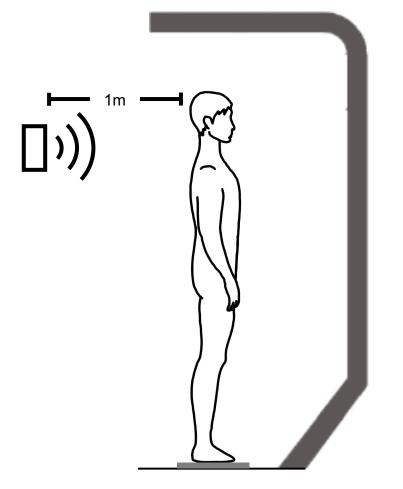
Inclusion Criteria


- 60 years old and above
- Sensorineural hearing loss with 4FA of at least 40 dB HL in the better ear
- Hearing aid users for at least 3 months
- Able to ambulate without assistive devices

*4FA: Average threshold value from 500 Hz, 1000 Hz, 2000 Hz and 4000 Hz

Exclusion Criteria

- History of any neurological or musculoskeletal diagnosis that could account for possible imbalance and falls
- E.g. stroke, spinal stenosis, traumatic brain injury, Parkinson's disease, rheumatoid arthritis, cardiac problems, etc.
- Wheelchair-bound
- Had surgical operation on lower limb or spine in past 6 months

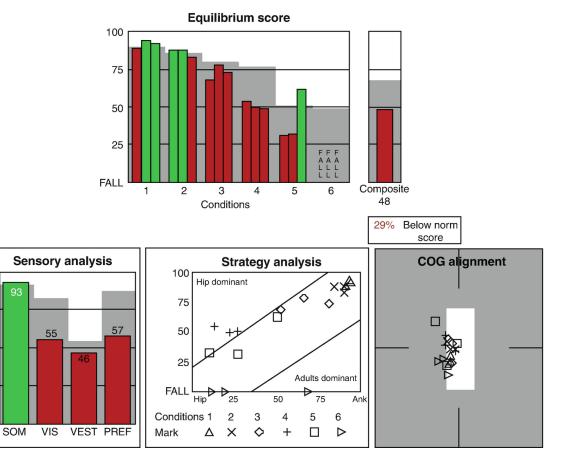

Assessments Performed

Sensory Organisation Test (SOT) (Modifications for this Study)

- 2 sets of SOT to be done (order to be randomized across patients)
 - Hearing aids turned on
 - Hearing aids turned off
- > At least 5 minutes of rest time in between sets
- 65 dB SPL recorded crowd noise played from speaker (Miniso DS-1338 Double-horn Stereo Wireless Speaker) 1m behind patient throughout SOT
- Sound level to be monitored by mobile app, iNVH (version 2.1.1) by BOSCH

Data Interpretation

100 r


75

50

25

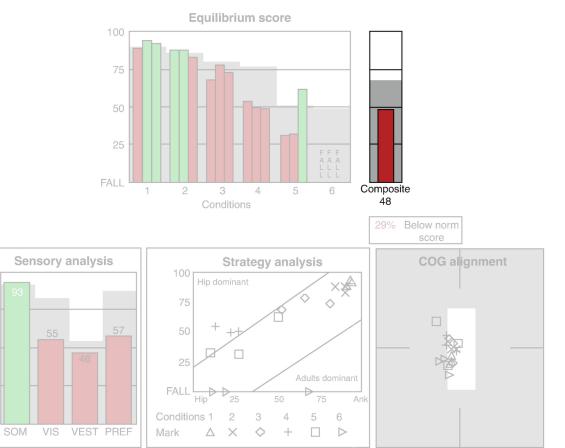
- One-tailed paired *t*-test to determine if <u>composite score</u> is significantly higher when hearing aids switched on
- One-tailed paired *t*-test to determine if <u>equilibrium scores</u> in a particular condition showed significantly improvement with hearing aids usage
- Two-sample *t*-test to determine if differences in composite/equilibrium scores are significantly different <u>between groups</u> with and without preexisting vestibular deficits
- Determination of <u>correlation</u> between ABC questionnaire scores and CDP SOT composite scores (with hearing aids)

Sensory organization test (Sway referenced gain: 1.0)

Results and Discussion

Findings of the Study

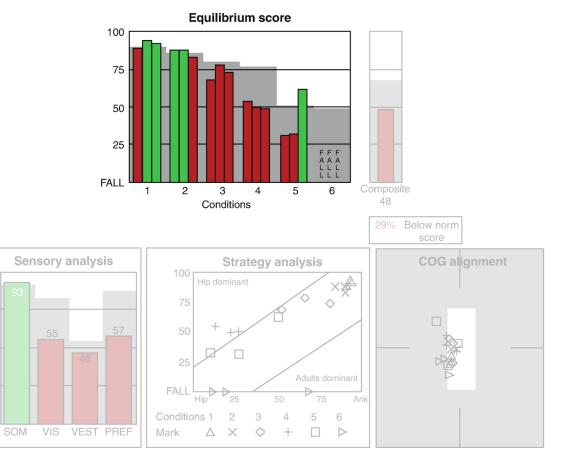
Participants Demographic


ŤŦŦŦŦŦŦŦŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢ

- ➢ 6 participants recruited (1 excluded from data analysis as 4FA<40 dB HL)</p>
- ➤ 5 males, 0 females
- ➢ 65-84 years old (mean=73 years old)
- ➤ Hearing aid acquisition period from 7-96 months
- Pre-existing vestibular deficit (n=1)

50

No significant improvement was observed (p-value>0.05) in composite scores with the usage of hearing aids.


Sensory organization test (Sway referenced gain: 1.0)

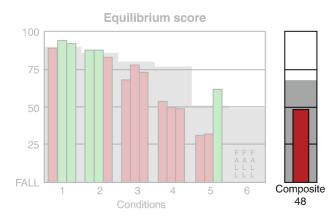
50

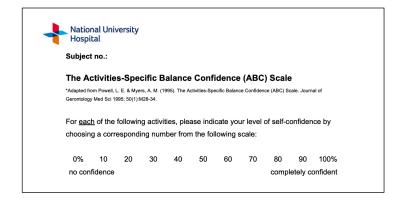
- No significant improvement was observed (p-value>0.05) in <u>composite scores</u> with the usage of hearing aids.
- No significant improvement was observed (p-value>0.05) in <u>equilibrium scores</u> with the usage of hearing aids for all 6 conditions

Sensory organization test (Sway referenced gain: 1.0)

- No significant improvement was observed (p-value>0.05) in <u>composite scores</u> with the usage of hearing aids.
- No significant improvement was observed (p-value>0.05) in equilibrium scores with the usage of hearing aids for all 6 conditions
- No significant difference observed (pvalue>0.05) <u>between groups</u> for composite score and equilibrium scores for all 6 conditions

Sensory organization test (Sway referenced gain: 1.0)




With Pre-Existing Vestibular Deficit

Without Pre-Existing Vestibular Deficit

- No significant improvement was observed (p-value>0.05) in <u>composite scores</u> with the usage of hearing aids.
- No significant improvement was observed (p-value>0.05) in <u>equilibrium scores</u> with the usage of hearing aids for all 6 conditions
- No significant difference observed (pvalue>0.05) between groups for composite score and equilibrium scores for all 6 conditions
- No significant correlation was observed between ABC questionnaire scores and CDP SOT composite scores (with hearing aids)

Sensory organization test (Sway referenced gain: 1.0)

Aims and Hypothesis

<u>Aims</u>

- > To investigate the relationship between auditory input and postural control
- To determine if the usage of hearing aids can help improve postural control in elderly with hearing loss

Discussions

Relationship between Auditory Input and Postural Control

- Possible reasons attributing to findings:
 - Algorithm for hearing aid amplification tends to reduce background noise → processed hearing aid output insufficient to provide spatial cues to help in balance
 - Directionality of hearing aid microphones → unable to pick up auditory stimulus which was presented from the back
 - Long hearing aid acquisition ≠ good hearing aid compliance
 - Sensory reweighting \rightarrow less reliant on auditory input for balance

Discussions

Effects of Pre-Existing Vestibular Deficit on SOT Improvement

- Studies shown that people with vestibular deficit rely on auditory cues for postural control (Dozza, Chiari & Horak, 2005; Vitkovic et al., 2016)
- Possible reason attributing to findings:
 - Small sample size (n=1 for participants with pre-existing vestibular deficit)

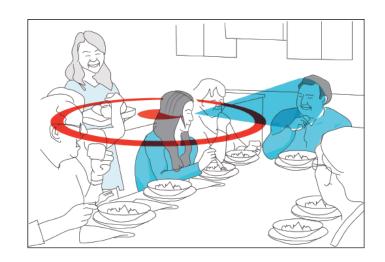
Discussions

Usage of Subjective Questionnaires

- Overestimation of balance ability
 - High ABC scores (mean=94.9, SD=4.93) not reflected in CDP SOT scores
 - Inflated self-appraisals in Asians (Yates, Lee & Shinotsuka, 1996)
- Results from subjective tests should be interpreted with caution
- > Should be used in conjunction with objective tests

Limitations

Small sample size


Gender bias

- Shorter reaction time and higher speed of movement in males (Faraldo-García, Santos-Pérez, Labella-Caballero & Soto-Varela, 2011)
- Difference in balancing strategies between males and females (Faraldo-García, Santos-Pérez, Labella-Caballero & Soto-Varela, 2011)
- Screening for pre-existing vestibular deficit
 - Currently only limited to assessment of inferior vestibular nerve and saccular function

Future Direction

- Longer period of time for conduct of study
- Include other vestibular tests for to determine pre-existing vestibular deficit (e.g. oVEMP, vHIT, VNG)
- > To check hearing aids data logging for hours of usage
- To standardise hearing aid settings, e.g. microphone directionality

Acknowlegement

Thesis Project Supervisors

Dr. Goh Xueying Ms. Tan Kah Yee

Faculty Members

Dr. Jennifer Ellery Martin Ms. Kek Tze Ling Mr. Edmund Choo

NUH Audiologists and Audio-Technicians

Ms. Shirley Chong Ms. Lee Zheng Zheng Ms. Joanna Tang Ms. Tan Pay Woon

Classmates of NUS Audiology Cohort 4

Participants of the study

THANK YOU

Any questions?

References

- Alghwiri, A. A., and Whitney, S. L. (2012). Balance and Falls. Journal of Geriatric Physical Therapy.
- Bergstrom, B. (1971). Morphology of the Vestibular Nerve. The Number of Myelinated Vestibular Nerve Fibres in Man at Various Ages. *Acta Otolaryngologica* 76:173-179.
- Faraldo-García, A., Santos-Pérez, S., Labella-Caballero, T., and Soto-Varela, A. (2011). Influence of Gender on the Sensory Organisation Test and the Limits of Stability in Healthy Subjects. *Acta Otorrinolaringologica (English Edition)*.62(5), 333-338.

Gulya, A. J. (2010). Developmental Anatomy of the Temporal Bone and Skull Base. Surgery of the Ear, 6e.

- Health Promotion Board. (2015). Falls Prevention among Older Adults Living in the Community. HPB-MOH Clinical Practice Guidelines.
- Lin, F. R., and Ferrucci, L. (2012). Hearing Loss and Falls among Older Adults in the United States. *Archives of Internal Medicine*. 172:369-371.
- McDaniel, D. M, Motts, S. D., and Neely, R. A. (2018). Effects of Bilateral Hearing Aid Use on Balance in Experienced Adult Hearing Aid Users. *American Journal of Audiology.* 27(1), 121.
- Morita, N., Kariya, S., Farajzadeh, D. A., Cureoglu, S., Nomiya, S., Nomiya, R., ... Paparella, M. M. (2009) Membranous Labyrinth Volumes in Normal Ears and Meniere Disease: A Three-Dimensional Reconstruction Study. *Laryngoscope*. 119:2216-2220. doi: 10.1002/lary.20723
- Negahban, H., Bavarsad, C. M., and Nassadj, G. (2017). Effect of Hearing Aids on Static Balance Function in Elderly with Hearing Loss. *Gait Posture*. 58:126-129.
- Rosenhall, U. (1971). Degenerative Patterns in the Aging Human Vestibular Neuroepithelia. *Acta Otolaryngologica*. 76:208-220.
 Rumalla, K., Karim, A. M., and Hullar, T. E. (2015). The Effect of Hearing Aids on Postural Stability. *Laryngoscope*. 125:720-723.
 Tjernstrom, F. (2009). Adaptation and Learning in Postural Control.
- Viljanen, A., Kaprio, J., Pyykko, I., Sorri, M., Pajala, S., Kauppinen, M., ... Rantanen, R. (2009). Hearing as a Predictor of Falls and Postural Balance in Older Female Twins. *Journal of Gerontology Series A Biological Sciences and Medical Sciences*. 64:312-317.
- Yates, J. F., Lee, J.-W., & Shinotsuka, H. (1996). Beliefs about Overconfidence, Including Its Cross-National Variation. *Organizational Behavior and Human Decision Processes*. 65(2), 138–147.
- Zuniga, M. G., Dinkes, R. E., Cavalos-Bichara, M., Carey, J. P., Schubert, M. C., King, W. M., Walston, J., and Agrawal, Y. (2012). Association between Hearing Loss and Saccular Dysfunction in Older Individuals. *Otology & Neurotology.* 2012;33(9):1586-1592.